Effect of Hydrostatic Pressure on Optical Absorption Coefficient of InGaN/GaN of Multiple Quantum Well Solar Cells

Document Type : Articles


1 Department of Physics, Khoy branch, Islamic Azad University, Khoy, Iran

2 Department of Physics, Khoy Branch, Islamic Azad University, Khoy, Iran


In this paper, a numerical model is used to analyze an optical absorption coefficient according to the electronic properties of InGaN/GaN multiple-quantum-well solar cells (MQWSC) under hydrostatic pressure. Finite difference techniques have been used to acquire energy eigenvalues and their corresponding eigenfunctions of InGaN/GaN MQWSC and the hole eigenstates are calculated via a 6*6 k.p method under the applied hydrostatic pressure. All symmetry-allowed transitions up to the fifth subband of the quantum wells (multi-subband model) and barrier optical absorption, as well as the linewidth due to the carrier-carrier and carrier-longitudinal optical (LO) phonon scattering, are considered here. A change in the pressure up to 10 GPa increases the intraband scattering time up to 38fs and 40fs for light and heavy holes, respectively, raises the height of the Lorentz function and reduces the excitonic binding energy. The multi-subband model has a positive effect on the optical absorption coefficient and increases it by %17, contrary to the pressure function.


[1] C. Boudaoud, A. Hamdoune, Z. Allam. Simulation and optimization of a
tandem solar cell based on InGaN. Mathematics and Computers in
Simulation, 167 (2020) 194-201.
[2] M. Kuc, L. Piskorski, M. Dems, M. Wasiak, A. K. Sokoł, Robert P. Sarzała,
T. Czyszanowski. Numerical Investigation of the Impact of ITO, AlInN,
Plasmonic GaN and Top Gold Metalization on Semipolar Green EELs.
Materials. 13 (2020) 1444.
[3] A. Tian, L. Hu, L. Zhang, J. Liu, H. Yang. Design and growth of GaN-based
blue and green laser diodes. Sci China Mate. 63(8) (2020) 1348–1363.
[4] A. Pandey, W. J. Shin, J. Gim, R. Hovden, Z. Mi. High-efficiency
AlGaN/GaN/AlGaN tunnel junction ultraviolet light-emitting diodes.
Photonics Research. 8(3) (2020) 331-337.
Effect of Hydrostatic Pressure on Optical Absorption Coefficient of InGaN/GaN … * 19
[5] X. Huang, H. Chen et al. Energy band engineering of InGaN/GaN multiquantum-
well solar cells via AlGaN electron- and hole-blocking layers. Appl
Phys Lett. 113(4) (2018) 043501.
[6] A.G. Bhuiyan, K. Sugita, A. Hashimoto, A. Yamamoto. InGaN solar cells:
present state of the art and important challenges. IEEE J Photovolt. 2(3)
(2012) 276-293.
[7] J. Wu, W. Walukiewicz et al. Small band gap bowing in In1xGaxN alloys.
Appl. Phys. Lett. 80 (2002) 4741.
[8] R. Yahyazadeh, Effect of hydrostatic Pressure on Optical Absorption
Spectrum AlGaN/GaN Multi-quantum wells. Journal of Interfaces, Thin films,
and Low dimensional systems. 3(2) (2021) 279-287.
[9] R. Yahyazadeh, Z. hashempour. Effects of Hydrostatic Pressure and
Temperature on the AlGaN/GaN High Electron Mobility Transistors, Journal
of Interfaces. Thin films, and Low dimensional systems. 2(2) (2019) 183-194.
[10] S. Z. H. Minabi, A. Keshavarz, A. Gharaati. The effect of temperature on
optical absorption cross section of bimetallic core-shell nano particles.
Journal of Optoelectronical Nanostructures. 1(3) (2016) 62-75.
[11] Y. Sefidgar, H. R. Saghai, H. G. K. Azar. Enhancing Efficiency of Twobond
Solar Cells Based on GaAs/InGaP. Journal of Optoelectronical
Nanostructures. 4(2) (2019) 84-102.
[12] Q. Deng et al. An investigation on InxGa1−xN/GaN multiple quantum well
solar cells. J. Phy. D: Appl. Phy. 44 (2011) 265103.
[13] R. Belghouthi, M. Aillerie. Temperatur dependece of InGaN/GaN Multiple
quantum well solar cell. Energy Procedia. 157 (2019) 793.
[14] B. Chouchen, M. H. Gazzah, A. Bajahzar, Hafedh Belmabrouk. Numerical
Modeling of the Electronic and Electrical Characteristics of InGaN/GaNMQW
Solar Cells. Materials. 12 (2019) 1241.
[15] R. Yahyazadeh. Numerical Modeling of the Electronic and Electrical
Characteristics of InGaN/GaN Multiple Quantum Well Solar Cells. J. of
Photonics for Energy. 10 (2020) 045504.
[16] X. Huang. Piezo-Phototronic Effect in a Quantum Well Structure. ACS Nano.
10(5) 5145 (2016) 5145.
[17] O. Ambacher, A. B. Foutz, J. Smart, J. R. Shealy, N. G. Weimann, K. Chu et
al. Two dimensional electron gases induced by spontaneous and piezoelectric
polarization in undoped and doped AlGaN/GaN heterostructures. J. Appl.
Phys. 87 (2000) 334.
20 * Journal of Optoelectronical Nanostructures Spring 2021 / Vol. 6, No. 2
[18] O. Ambacher, J. Majewski, C. Miskys, et al. Pyroelectric properties of Al (In) GaN/GaN hetero- and quantum well structures. J. Phys. Condens. Matter. 14 (2002) 3399.
[19] Z. J. Feng, Z. J. Cheng, and H. Yue. Temperature dependence of Hall electron density of GaN-based heterostructures. Chinese Physics. 13 (2004) 1334.
[20] V. Fiorentini, F. Bernardini, and O. Ambacher. Evidence for nonlinear macroscopic polarization in III–V nitride alloy Heterostructures. Appl. Phys. Lett. 80 (2002) 1204.
[21] P. Perlin, L. Mattos, N. A. Shapiro, J. Kruger, W. S. Wong, T. Sands, N. W. Cheung, E. R. Weber. Reduction of the energy gap pressure coefficient of GaN due to the constraining presence of the sapphire substrate. J. Appl. Phys. 85 (1999) 2385.
[22] K.J Bala, A. J Peter, C. W Lee. Simultaneous effects of pressure and temperature on the optical transition energies in a Ga0.7In0.3N/GaN quantum ring. Chemical Physics. 495 (2017) 42.
[23] I. Vurgaftman, J. R Meyer, L. R. R Mohan. Band parameters for III–V compound semiconductors and their alloys. J. Appl. Phys. 89 (2001) 5815.
[24] B. Jogai. Influence of surface states on the two-dimensional electron gas in AlGaN/GaN heterojunction field-effect transistors. Journal of Applied Physics. 93 (2003) 1631.
[25] B. Jogai. Parasitic Hole Channels in AlGaN/GaN Heterojunction Structures. Phys. stat. sol. (b). 233(3) (2002) 506.
[26] V. B. Yekta, H. Kaatuzian. Design considerations to improve high temperature characteristics of 1.3μm AlGaInAs-InP uncooled multiple quantum well lasers: Strain in barriers. Optik. 122 (2011) 514.
[27] J. Piprek, Semiconductor Optoelectronic Devices: Introduction to Physics and Simulation, Elsevier Scince, San Diego.California, 2013, 121-129.
[28] A. Horri, S. Z. Mirmoeini. Analysis of Kirk Effect in Nanoscale Quantum Well Heterojunction Bipolar Transistor Laser. Journal of Optoelectronical Nanostructures. 5(2) (2020) 25-38
[29] M. Cheraghizade. Optoelectronic Properties of PbS Films: Effect of Carrier Gas. Journal of Optoelectronical Nanostructures. 4(2) (2019) 1-12.
[30] P. S. Zory, Quantum well lasers, Academic. San Diego. Ca, 1993, 58-150.
[31] C.D. Mahan, Many-body particle physics, Plenum press, New York and London, 1990, 109-183.
Effect of Hydrostatic Pressure on Optical Absorption Coefficient of InGaN/GaN … * 21
[32] W. Wei-Ying et al. Effects of interface roughness on photoluminescence full width at half maximum in GaN/AlGaN quantum wells. Chin. Phys. B. 23(11) (2014) 117803.
[33] R. yahyazadeh, Z. Hashempour. Numerical Modeling of Electronic and Electrical Characteristics of Multiple Quantum Well Solar Cells Al0.3Ga0.7N/GaN. Journal of Optoelectronical Nanostructures. 5(3) (2020) 81.
[34] S. H. Ha, S. L. Ban. Binding energies of excitons in a strained wurtzite GaN/AlGaN quantum well influenced by screening and hydrostatic pressure. J. Phys.: Condens. Matter. 20 (2008) 085218.
[35] J.G. Rojas-Briseno, I. Rodriguez-Vargas, M. E. Mora-Ramos, J.C. Martínez-Orozco. Heavy and light exciton states in c-AlGaN/GaN asymmetric double quantum wells. Physica E. 124 (2020) 114248.
[36] P. Harrison, A. Valavanis, Quantum Wells, Wires and Dots: Theoretical and Computational Physics of Semiconductor Nanostructures, Wiley, 4th ed., 2016, 189-217.
[37] E. Kasapoglu, H. Sari, N. Balkan, I. Sokmen, Y. Ergun. Binding energy of excitons in symmetric and asymmetric coupled double quantum wells in a uniform magnetic field. Semicond. Sci. Technol. 15(2) (2000) 219.
[38] J.G. Rojas-Briseño, J.C. Martínez-Orozco, M.E. Mora-Ramos. States of direct and indirect excitons in strained zinc-blende GaN/InGaN asymmetric quantum wells. Superlattices and Microstructures. 112 (2017) 574-583.
[39] R Yahyazadeh, Z.Hashempour. Effect of Hydrostatic Pressure and Temperature on Quantum Confinement of AlGaN/GaN HEMTs. Journal of Science and Technology. 13(1) (2021) 1-11.
[40] S.L. Chung, C.S. Chang. k.p method for strained wurtzite semiconductor. Phys. Rev. B. 54 (1996) 2502.
[41] S. Adachi, Physical Properties of III-V compounds, John Wiley & Sons, 1992, 290.
[42] S. R. Chinn, P. S. Zory, A. R. Reisinger. A Modal for Grin-SCH-SQW Diode Lasers. IEEE Journal of quantum Electronics. 24(11) (1988) 2191.
[43] I. Tan, G. L. Snider, L. D. Chang, E. L. Hu. A self-consistent solution of Schrödinger–Poisson equations using a nonuniform mesh. J. Appl. Phys. 68 (1990) 4071.
[44] X. Huang et al. Piezo-Phototronic Effect in a Quantum Well Structure. ACS Nano. 10 (2016) 5145.
22 * Journal of Optoelectronical Nanostructures Spring 2021 / Vol. 6, No. 2
[45] Z. Dongmei, W. Zongchi, X. Boqi. Correlated electron–hole transitions in wurtzite GaN quantum dots: the effects of strain and hydrostatic pressure. J. Semicond. 33 (2012) 052002.