Ab–initio study of the electronic and optical traits of Na0.5Bi0.5TiO3 nanostructured thin film

Document Type : Articles


1 Department of applied mathematics, Astaneh Ashrafieh Branch, Islamic Azad University, Astaneh Ashrafieh, Iran

2 Nano Research Lab, Lahijan Branch, Islamic Azad University, P.O. Box: 1616, Lahijan, Iran


The electronic, and optical properties of rhombohedral Na0.5Bi0.5TiO3
nanostructured thin film have been studied by the first–principle approach. Density
functional theory (DFT) has been employed to calculate the fundamental properties of
the layers using full–potential linearized augmented plane–wave (FPLAPW) method. A
2×2×1 supercell was constructed with two vacuum slabs on top and down of the
supercell. A geometry optimization was performed by PBE method. The optimized thin
film structure was used for the intended calculations. As well, the reflectance, dielectric
function, refractive index, of the thin film were calculated in the UV–vis region. Results
showed very well consistency with the available experimental and theoretical reports.
The optical conductivity also followed a similar trend to that of the dielectric constants.
Energy loss function of the modeled compound was also evaluated. The evaluated loss
function showed sharp peaks in UV-vis region and followed a steady state in IR, MIR
and FIR parts of spectrum.


[1] M. Zeng, S. Wing, H. L. Wa Chan, First-principles study on the electronic and optical properties of Na0.5Bi0.5TiO3 lead-free piezoelectric crystal. J. Appl. Phys. 107 (2010, 22 Feb.) 043513.
Available: https://aip.scitation.org/doi/full/10.1063/1.3309407
[2] Verma, A. Kumar Yadav, S. Kumar, V. Srihari, R. Jangir, H. K. Poswal ,S. Biring, S. Sen , Enhanced energy storage properties in A-site substituted of Na0.5Bi0.5TiO3 ceramics. J. Alloys Compd. 797 (2019, 5 Jul.) 95–107.
Available: https://www.sciencedirect.com/science/article/pii/S0925838819311302
[3] H. Sankar Mohanty, T. Dam, H. Borkar, D. K Pradhan, K. K. Mishra, A. Kumar, B. Sahoo, P. K. Kulriya, C. Cazorla, J. F. Scott, D. K. Pradhan, Structural transformations and physical properties of (1-x)Na0.5Bi0.5TiO3-xBaTiO3 solid solutions near a morphotropic phase boundary. J. Phys.:Condens. Matter. 31 (2019) 075401.
Available: https://doi.org/10.1088/1361-648X/aaf405
[4] S.-E. Park, S.-J. Chung, and I.-T. Kim, Ferroic phase transition in Na0.5Bi0.5TiO3 crystals. J. Am. Ceram. Soc. 79 (1996, May) 1290–1296.
Available: https://ceramics.onlinelibrary.wiley.com/doi/abs/10.1111/j.1151-2916.1996.tb08586.x
[5] X. Yi, H. Chen, W. Cao, M. Zhao, D. Yang, G. Ma, C. Yang, J. Han, Flux Growth and characterization of lead-free piezoelectric single crystal [Bi0.5(Na1-xKx)0.5] TiO3. J. Cryst. Growth. 281 (2005, Aug.) 364–369.
Available: https://www.sciencedirect.com/science/article/pii/S0022024805004136
[6] M. K. Niranjan, T. Karthik, S. Asthana, J. Pan, U. V. Waghmare, Theoretical and experimental investigation of Raman modes, ferroelectric and dielectric properties of relaxor Na0.5Bi0.5TiO3. J. Appl. Phys. 113 (2013, Apr.) 194106.
Available: https://aip.scitation.org/doi/10.1063/1.4804940
[7] K. Dorywalski, N. Lemée, B. Andriyevsky, R. Schmidt-Grund, M. Grundmann, M. Piasecki, M. Bousquet, T. Krzyzynski. Optical properties of epitaxial Na0.5Bi0.5TiO3 lead-free piezoelectric thin films: Ellipsometric and theoretical studies. App. Surf. Sci. 421 (2017, Nov.) 367-372.
Available: https://www.sciencedirect.com/science/article/pii/S016943321631947X
[8] B. Delley, From molecules to solids with the DMol3 approach. J. Chem. Phys. 113 (2000, Oct.) 7756–7764.
Available: https://aip.scitation.org/doi/10.1063/1.1316015
[9] F. A. Hamprecht, A. J. Cohen, D. J. Tozer, N. C. Handy, Development and assessment of new exchange-correlation functionals. J. Chem. Phys. 109 (1998, Jul.) 6264–6271.
Available: https://aip.scitation.org/doi/10.1063/1.477267
[10] H.J. Monkhorst, J.D. Pack, Special points for Brillouin-zone integrations. Phys. Rev. B 13 (1976, Jun.) 5188–5192.
Available: https://journals.aps.org/prb/abstract/10.1103/PhysRevB.13.5188
[11] G. O. Jones, P. A. Thomas, Investigation of the structure and phase transitions in the novel A-site substituted distorted perovskite compound Na0.5Bi0.5TiO3. Acta Crystallogr. B 58 (2002, Apr.) 168–178.
Available: http://journals.iucr.org/b/issues/2002/02/00/os0082/rtvsup.html
[12] R. Bujakiewicz-Koroska, Y. Natanzon, Determination of elastic constants of Na0.5Bi0.5TiO3 from ab initio calculations. Phase Transit. 81 (2008, Dec.) 1117–1124.
Available: https://www.tandfonline.com/doi/full/10.1080/01411590802460833
[13] H. Izadneshan, G. Solookinejad, Effect of annealing on physical properties of Cu2ZnSnS4 (CZTS) thin films for solar cell applications. JOPN. 3 (2) (2018, Spring) 19-28. Available: http://jopn.miau.ac.ir/article_2861.html
[14] M. Borhani Zarandi, H. Amrollahi Bioki, Effects of cobalt doping on optical properties of ZnO thin films deposited by sol-gel spin coating technique. JOPN. 3(2) (2019, Autumn) 33-44.
Available: http://jopn.miau.ac.ir/article_2572.html
[15] S. Manouchehri, J. Zahmatkesh, M. H. Yousefi, Substrate effects on the structural properties of thin films of lead sulfide. JOPN. 3(2) (2019, Spring) 1-18. Available: http://jopn.miau.ac.ir/article_2860.html
[16] Z. Dehghani Tafti, M. Borhani Zarandi, H. Amrollahi Bioki, Thermal annealing influence over optical properties of thermally evaporated SnS/CdS bilayer thin films. JOPN. 4(1) (2019, Winter).
Available: http://jopn.miau.ac.ir/article_3387.html
[17] M. Cheraghizadeh, Optoelectronic properties of PbS films: Effect of carrier gas. JOPN. 4(2) (2019, Spring).
Available: http://jopn.miau.ac.ir/article_3474.html
[18] Y. Abed, F. Mostaghni, Polarizability and hyperpolarizability of Schiff base salen-H2 as judged as UV-vis spectroscopy and simulation analysis. JOPN. 3(1) (2018, Winter) 27-40.
Available: http://jopn.miau.ac.ir/article_2821.html