High Sample Rate Optically Pumped Helium Magnetometer

Document Type : Articles


1 Malek Ashtar University of Technology

2 Department of Physics, Marvdasht Branch, Islamic Azad University, Marvdasht, Iran

3 Vali-e-Asr University of Rafsanjan


Optically pumped helium magnetometers are important instruments which
have many applications in military, mass spectroscopy and space applications. In this
paper, the working principles of helium magnetometers have been explained. There is
also an introduction of a new method for finding the resonant frequency, which has
advantages to the typical method such as more sample rate possibility and realizing with
cheaper prices.


[1] E. Labyt, M.-C. Corsi, W. Fourcault, A. P. Laloy, F. Bertrand, F. Lenouvel,
G. Cauffet, M. Le Prado, F. Berger and S. Morales,
Magnetoencephalography With Optically Pumped 4He Magnetometers at
Ambient Temperature, IEEE Trans. Med. Imag. 38 (2019) 90.
[2] O. Baffa, R. H. Matsuda, S, Arsalani, J. R. A. Miranda and R. T. Wakai,
Development of an optical pumped gradiometric system to detect magnetic
relaxation of magnetic nanoparticles, J. Magn. Magn. Mater. 475 (2019)
[3] D. D. McGregor, Laser driven helium magnetometers, U.S. Patent 4 780
672, (1988) Oct. 25.
[4] R. E. Slocum, P. C. Cabiness Jr. and S. L. Blevins, Self-oscillating
Magnetometer utilizing optically pumped 4He*, Rev. Sci. Instrum. 42 (1971)
[5] M. J. Usher, W. F. Stuart and S. H. Hall, A self-oscillating rubidium
vapour magnetometer for geomagnetic measurements, J. Sci. Instrum. 41
(1964) 544.
[6] Q. Zhao, B. L. Fan, S. G. Wang and L. J. Wang, A vector atomic
magnetometer based on the spin self-sustaining Larmor method, J. Magn.
Magn. Mater. 481 (2019) 257.
[7] A. J. Fairweather and M. J. Usher, A vector rubidium magnetometer, J.
Phys. E: Sci. Instrum. 5 (1972) 986.
[8] A. L. Bloom, Principles of operation of the rubidium vapor magnetometer,
Appl. Opt. 1 (1962) 61.
[9] D. Arnold, S. Siegel, E. Griasanti, J. Wrachtrup and I. Gerhardt, A rubidium
Mx-magnetometer for measurements on solid state spins, Rev. Sci. Instrum.
88 (2017) 023103.
[10] H. Kai-Kai, L. Nan and L. Xuan-Hui, A high sensitivity laser-pumped
cesium magnetometer, Chin. Phys. Lett. 29 (2012) 1007011.
[11] S. Groeger, G. Bison, P. E. Knowles, R. Wynands and A. Weis, Laserpumped
cesium magnetometers for high-resolution medical and
fundamental research, Sens. Actuator. A: Phys. 129 (2006) 1.
[12] W.-M. Sun, Q. Huang, Z.-J. Huang, P. W. Wang and J.-H. Zhang, All-
Optical Vector Cesium Magnetometer, Chin. Phys. Lett. 34 (2017) 058501.
[13] H. Gilles, J. Hamel and B. Chéron, Laser-pumped 4He Magnetometer, Rev.
Sci. Instrum. 72 (2001) 2253.
[14] D. D. McGregor, High-sensitivity helium resonance magnetometers, Rev.
Sci. Instrum. 58 (1987) 1067.
[15] F. Beato, E. Belorizky, E. Labyt, M. Le Prado and A. Palacios-Laloy,
Theory of a 4He parametric-resonance magnetometer based on atomic
alignment, Phys. Rev. A 98 (2018) 053431.
[16] M. H. Acuna, Space-based Magnetometers, Rev. Sci. Instrum. 73 (2002)
[17] R. E. Slocum, L. D. Schearer, P. Tin and R. Marquedant, Nd:LNA laser
optical pumping of 4He: Application to space magnetometers, J. Appl. Phys.
64 (1988) 6615.
[18] F. D. Colegrove and P. A. Franken, Optical pumping of helium in the 3S1
metastable state, Phys. Rev. 119 (1960) 680.
[19] D. Budker and D. F. J. Kimball, Optical magnetometry, Cambridge
University Press, 2013.
[20] W. Happer, Y. –Y. Jau and T. Walker, Optically pumped atoms, John Wiley
and sons, 2010.
[21] A. Shamir, A linear time algorithm for finding minimum cutsets in reducible
graphs, SIAM J. Comput. 8 (1979) 645.
[22] Th. H. Cormen, Ch. E. Leiserson, R. L. Rivest and C. Stein, Introduction to
algorithms, MIT press, 2009.