Substrate Effects on the Structural Properties of Thin Films of Lead Sulfide

Document Type : Articles


Department of Physics, Faculty of Science, Malek Ashtar University of Technology, Shahinshahr, Isfahan, Iran.


Nanocrystalline PbS thin films are deposited on glass and alumina substrates
through the chemical bath deposition technique by creating similar conditions, in order
to investigate the effects of the substrate. The structural and optical properties of PbS
films are investigated by X-ray diffraction, scanning electron microscope, and UV–Vis.
The structural analyses of the films indicate that they are of polycrystalline
configurations and have a face-centered-cubic (fcc) rock-salt structure on different
substrates. The X-ray diffraction shows that the structure peaks occur at slightly higher
angles in the deposited (grown) films on glass substrate than the ones deposited on
alumina substrate. Crystal parameters are exceptionally affected by the type of substrate
as well. SEM images reveal that the surface morphology of the PbS thin films is quite
dependent upon the nature of the substrate. The optical band gaps of the samples are
found to be 1.521 eV for glass and 1.678 eV for alumina substrates, which are higher in
comparison to the bulk value (0.41 eV). According to the obtained results, PbS thin film
on alumina substrate has narrower particle size distribution, better transmission and
lower stress than PbS thin film on glass substrate.


[1] S. Seghaier, N. Kamoun, R. Brini, and A. Amara. Structural and optical properties of PbS thin films deposited by chemical bath deposition. Mater. Chem. Phys. [Online]. 97(1) (2006, May.) 71-80. Available:
[2] J. Tian, T. Shen, X. Liu, C. Fei, L. Lv, and G. Cao. Enhanced performance of PbS-quantum-dot-sensitized solar cells via optimizing precursor solution and electrolytes. Sci. rep. [Online]. 6 (2016, Mar.) 23094. Available: 10.1038/srep23094
D. Kumar, G. Agarwal, B. Tripathi, D. Vyas, and V. Kulshrestha. Characterization of PbS nanoparticles synthesized by chemical bath deposition. J. Alloys Compd. [Online]. 484(1) (2009, Sep.) 463-466. Available:
[3] S. Arabzade, M. Samadpour, and N. Taghavinia. Sequential deposition as a route for efficient counter electrodes in quantum dot sensitized solar cells. RSC Advances. [Online]. 5(57) (2015, May.) 45592-45598. Available:!divAbstract
[4] M. Abbas, A.A.M. Shehab, N. Hassan, and A. Al-Samuraee. Effect of temperature and deposition time on the optical properties of chemically deposited nanostructure PbS thin films. Thin Solid Films. [Online]. 519(15) (2011, May.) 4917-4922. Available:
[5] A.P. Gaiduk, P.I. Gaiduk, and A.N. Larsen. Chemical bath deposition of PbS nanocrystals: Effect of substrate. Thin Solid Films. [Online]. 516 (12) (2008, Apr.) 3791-3795. Available:
[6] A. Fouda, M. Marzook, H.A. El-Khalek, S. Ahmed, E. Eid, and A. El Basaty. Structural and optical characterization of chemically deposited PbS thin films. Silicon. [Online]. 9(6) (2017, Nov.) 809-816. Available:
[7] B. Abdallah, A. Ismail, H. Kashoua, and W. Zetoun. Effects of deposition time on the morphology, structure, and optical properties of PbS thin films prepared by chemical bath deposition. J. Nanomaterials. [Online]. 2018 (2018, May.) ID 1826959. Available:
[8] M. Faraj and M. Pakhuruddin. Deposited lead sulfide thin films on different substrates with chemical spray pyrolysis technique. Int. J. Thin. Fil. Sci. Tec. [Online]. 4(3) (2015) 215-217. Available:
[9] S. Naghibi, M.A. Faghihi Sani, and H.R. Madaah Hosseini. Application of the statistical Taguchi method to optimize TiO2 nanoparticles synthesis by the hydrothermal assisted sol–gel technique. Ceram. Int. [Online]. 40(3) (2014, Apr.) 4193-4201. Available:
[10] M. Mozafari, F. Moztarzadeh, D. Vashaee, and L. Tayebi. Effects of heat treatment on physical, microstructural and optical characteristics of PbS luminescent nanocrystals. Physica E. [Online]. 44(7-8) (2012, Apr.–May.) 1429-1435. Available:
[11] A. Hussain, A. Begum, and A. Rahman. Characterization of nanocrystalline lead sulphide thin films prepared by chemical bath deposition technique. Arab. J. Sci. Eng. [Online]. 38(1) (2013, Jan.) 169-174. Available:
[12] N. Choudhury and B. Sarma. Structural characterization of lead sulfide thin films by means of X-ray line profile analysis. Bull. Mater. Sci. [Online]. 32(1) (2009, Feb.) 43-47. Available:
[13] S. Kumar, T. Sharma, M. Zulfequar, and M. Husain. Characterization of vacuum evaporated PbS thin films. Physica B. [Online]. 325 (2003, Jan.) 8-16. Available:
[14] K. Kamli, Z. Hadef, B. Chouial, B. Zaidi, B. Hadjoudja, and A. Chibani. Synthesis and characterisation of tin sulphide thin films. Surface Eng. [Online]. 33(8) (2017, Jan.) 567-572. Available:
[15] P. Barman and P. Sharma. Optical studies of Se-Bi-Te-Sb thin films by single transmission spectrum. Glass Phys. Chem. [Online]. 39(3) (2013, May.) 276-278. Available:
[16] H. Kumar, P. Ram, and M. Singh. Effect of rapid thermal annealing on optical properties of zinc sulphide thin films. Surface Eng. [Online]. 33(3) (2017, Jul.) 181-185. Available:
[17] M. Mazilu, N. Tigau, and V. Musat. Optical properties of undoped and Al-doped ZnO nanostructures grown from aqueous solution on glass substrate. Opt. mater. [Online]. 34(11) (2012, Jun.) 1833-1838. Available:
[18] M.B. Rabeh and M. Kanzari. Optical constants of Zn-doped CuInS2 thin films. Thin Solid Films. [Online]. 519(21) (2011, Jan.) 7288-7291. Available: [19] F. El-Tantawyd, F. Yakuphanogluc, and W. Farooq. Determination of Optical Constants of Nanocluster CdO Thin Films Deposited by Sol Gel Technique. Acta Phys. Pol. A. [Online]. 126(3) (2014, Jul.) 798-807. Available: 10.12693/APhysPolA.126.798 [20] J. Akinlami and F. Bolaji. Complex index of refraction of indium nitride InN. Semiconductor Physics. Semicond. Phys. Quantum Electron. Optoelectron. [Online]. 15(3) (2012, Sep.) 276-280. Available:
[21] E.D. Como, F.D. Angelis, H. Snaith, and A. Walker. Unconventional Thin Film Photovoltaics. The Royal Society of Chemistry, Cambridge, UK, 2016, 57-106. Available:
[22] H. Gao, J. Tian, H. Kong, P. Yang, W. Zhang, and J. Chu. Optical and magnetic properties of mixed crystal Ti0.95Ni0.05O2 films deposited on Si substrates by sol–gel method. Surf. Coat. Technol. [Online]. 228 (2013, Aug.) 162-166. Available:
[23] A.S. Obaid, M.A. Mahdi, and Z. Hassan. Growth of Nanocrystalline PbS Thin Films by Solid-Vapor Deposition. Adv. Mater. Res. [Online]. 620(1) (2013, Jan.) 1-6. Available:
[24] F. Göde, E. Güneri, F. Emen, V.E. Kafadar, and S. Ünlü. Synthesis, structural, optical, electrical and thermoluminescence properties of chemically deposited PbS
thin films. J. Lumin. [Online]. 147 (2014, Mar.) 41-48. Available:
[25] C.O. Mosiori, W.N. Njoroge, and J. Okumu. Optical and electrical properties of Pbs thin films grown by chemically bath deposition [CBD] at different lead concentrations. Int. J. Adv. Res. Phys. Sci. [Online]. 1(1) (2014, May.) 25-32. Available:
[26] I. Ikhioya, S. Ehika, and B. Ijabor. Influence of Deposition Potential on Lead Sulphide (PbS) Thin Film Using Electrodeposition Technique. Asian. J. Chem. Sci. [Online]. 3(4) (2018, Mar.) 1-8. Available:
[27] S. Ahmad, S. Kasim, and L. Latif. Effects of thermal annealing on structural and optical properties of nanocrystalline CdxPb1-xS thin films prepared by CBD. Jordan. J. Phys. [Online]. 9(2) (2016, Oct.) 113-122. Available: