Polarizability and Hyperpolarizability of Schiff Base Salen-H2 as Judged as UV-vis Spectroscopy and Simulation Analysis

Document Type : Articles


1 Department of Physic, Payam Noor University, P.O.Box: 19395-4697, Iran

2 Department of Chemistry, Payam Noor University, P.O.Box: 19395-4697, Iran


The aim of the present study was to evaluate the properties of linear and
nonlinear optics of the Schiff base Salen. Crystal structure of nanoparticles was
determined by a Bruker make diffractometer, Cu-K X-rays of wavelength (=1.5406
Å). The XRD patterns were recorded in the 2 range of 10–90o with a step width of 0.02
s-1. The UV-Vis Spectra recorded on a computerized double - beam Shimadzu 2550
spectrophotometer, using two matched 10.0 mm quartz cell. In this paper, refractive
index, extinction coefficient and optical conductivity are calculated by using UV
spectrum (Ultraviolet). Also, nonlinear optical property of matter and dielectric tensor are
computed by using Gaussian software and based on density functional theory (DFT). The
results showed that with decreasing of wavelength, the refractive index increase from 1.19
value to 2.64. This is due to the strong interaction between photons and conducting
electrons. Also material was not asymptotic and has non-linear optical property, Also the
triclinic structure for this material has been specified through dielectric tensor.


[1] Z. Feng, J. Wang, Y, Wang. C. Ye, Study on nonlinear optical active NPP and PNP acrylate copolymers. Synthetic metals. 1993 Apr 12; 57 (1):3945-50.
[2] M.Y. Kariduraganavar, S.M. Tambe, R. G. Tasaganva, A. A. Kittur, S.S. Kulkarni, S.R. Inamdar, Studies on nonlinear optical polyurethanes containing heterocyclic chromophores. Journal of Molecular Structure. 2011 Feb 22; 987 (1-3):158-65.
[3] L. Ventelon, S. Charier, L. Moreaux, J. Mertz, M, Blanchard‐Desce, Nanoscale push–push dihydrophenanthrene derivatives as novel fluorophores for two‐photon‐excited fluorescence. Angewandte Chemie. 2001 Jun 1; 113 (11):2156-9.
[4] J. L. Bredas, C. Adant, P, Tackx. A. Persoons, B.M. Pierce, Third-order nonlinear optical response in organic materials: theoretical and experimental aspects. Chemical reviews. 1994 Jan; 94 (1):243-78.
[5] C. Bosshard, M. Canva, L, Dalton. U. Gubler. J. I. Jin, H.K. Shim, G.I. Stegeman, Polymers for photonics applications I. Springer Science & Business Media; 2002 Jan 11.
[6] M. Rumi, J.E. Ehrlich, A.A. Heikal, J.W. Perry, S. Barlow, Z. Hu, D. McCord-Maughon, T.C. Parker, H. Röckel, S. Thayumanavan, S.R. Marder, Structure− property relationships for two-photon absorbing chromophores: bis-donor diphenylpolyene and bis (styryl) benzene derivatives. Journal of the American Chemical Society. 2000 Oct 4; 122 (39):9500-10.
[7] H.K. Fun, A. Adhikari, P.S. Patil, B. Kalluraya, S. Chantrapromma, Ethyl 2-[(E)-4-(dimethylamino) benzylidenehydrazino]-5-nitrobenzoate. Acta Crystallographica Section E: Structure Reports Online. 2008 Dec 1; 64 (12): 2286-7.
[8] C. Dragonetti, A. Colombo, M. Fontani, D. Marinotto, F. Nisic, S. Righetto, D. Roberto, F. Tintori, S, Fantacci. Novel Fullerene Platinum Alkynyl Complexes with High Second-Order Nonlinear Optical Properties as a Springboard for NLO-Active Polymer Films. Organometallics. 2016 Mar 30; 35 (7):1015-21.
[9] F.Z. Henari, Optical switching in organometallic phthalocyanine. Journal of Optics A: Pure and Applied Optics. 2001 May; 3(3):188.
[10] F. Arkan, M. Izadyar, and A. Nakhaeipour, A quantum chemistry study on the performance of porphyrin-based solar cell sensitisers; Zinc and anchor group position effects. Molecular Physics, 2015 113(23): 3815-3825.
[11] P.R. Varanasi A.K. Jen, J. Chandrasekhar. I.N. Namboothiri, A. Rathna, The important role of heteroaromatics in the design of efficient second-order nonlinear optical molecules: Theoretical investigation on push− pull heteroaromatic stilbenes. Journal of the American Chemical Society. 1996 Dec 11; 118(49):12443-8.
[12] C. Bosshard, Third-order nonlinear optics in polar materials. InNonlinear Optical Effects and Materials 2000 (pp. 7-161). Springer, Berlin, Heidelberg.
[13] C. Bosshard, M. Bösch, I. Liakatas, M. Jäger, P. Günter, Second-order nonlinear optical organic materials: recent developments. InNonlinear Optical Effects and Materials 2000 (pp. 163-299). Springer, Berlin, Heidelberg.
[14] G, De La Torre. P. Vazquez, F. Agullo-Lopez. T. Torres, Role of structural factors in the nonlinear optical properties of phthalocyanines and related compounds. Chemical Reviews. 2004 Sep 8; 104(9):3723-50.
[15] X. X. Chen Hua, J. Hu. J.M. Langlois. W.A. Goddard, Band structures of II-VI semiconductors using Gaussian basis functions with separable ab initio pseudopotentials: Application to prediction of band offsets. Physical Review B. 1996 Jan 15; 53(3):1377.
[16] O, Signorini, E.R. Dockal. G. Castellano, G. Oliva, Synthesis and characterization of aquo [N, N′-ethylenebis (3-ethoxysalicylideneaminato)] dioxouranium (VI). Polyhedron. 1996 Jan 1; 15(2):245-55.
[17] H.B. Fu, J.N. Yao, Size effects on the optical properties of organic nanoparticles. Journal of the American Chemical Society. 2001 Feb 21; 123 (7):1434-9.
[18] P.S. Reddy, G.R. Chetty, S. Uthanna, B.S. Naidu, P.J. Reddy, Optical properties of spray deposited ZnO films. Solid state communications. 1991 Mar 1; 77 (12):899-901.
[19] J.C. Manifacier, J. Gasiot. J.P. Fillard, A simple method for the determination of the optical constants n, k and the thickness of a weakly absorbing thin film. Journal of Physics E: Scientific Instruments. 1976 Nov; 9 (11):1002.
[20] M. Ghasemifard, S.M. Hosseini, A.K. Zak, G.H. Khorrami, Microstructural and optical characterization of PZT nanopowder prepared at low temperature. Physica E: Low-dimensional Systems and Nanostructures. 2009 Jan 1; 41 (3):418-22.
[21] A.K. Zak, A.M. Hashim, M. Darroudi, Optical properties of ZnO/BaCO 3 nanocomposites in UV and visible regions. Nanoscale research letters. 2014 Dec; 9(1):399.
[22] Z.R. Khan, M. Zulfequar, M.S. Khan, Structural, optical, photoluminescence, dielectric and electrical studies of vacuum-evaporated CdTe thin films. Bulletin of Materials Science. 2012 Apr 1; 35 (2):169-74.
[23] M. Srivastava, A.K. Ojha, S. Chaubey, A. Materny, Synthesis and optical characterization of nanocrystalline NiFe2O4 structures. Journal of Alloys and Compounds. 2009 Jul 29; 481(1-2):515-9.
[24] P.N. Prasad, D.J. Williams. Introduction to nonlinear optical effects in molecules and polymers. Wiley; 1991.
[25] H. Soscun, O. Castellano, Y. Bermudez, C.T. Mendoza, A. Marcano and Y. Alvarado, Linear and nonlinear optical properties of pyridine N-oxide molecule, Journal of Molecular Structure. (Theochem) 592 (2002)
[26] K.S. Thanthiriwatte, K.N. De Silva, Non-linear optical properties of novel fluorenyl derivatives—ab initio quantum chemical calculations. Journal of Molecular Structure: THEOCHEM. 2002 Oct 31; 617 (1-3):169-75.
[27] H. Reis, Problems in the comparison of theoretical and experimental hyperpolarizabilities revisited. The Journal of chemical physics. 2006 Jul 7; 125(1):014506.
[28] E.S. Jatirian-Foltides, J.J. Escobedo-Alatorre, P.A. Márquez-Aguilar, H. Hardhienata, K. Hingerl, A, Alejo-Molina. About the calculation of the second-order susceptibility χ (2) tensorial elements for crystals using group theory. Revista mexicana de física E. 2016 Jun; 62 (1):5-13. [29] X. Liu, Z. Yang, D. Wang, H. Cao, Molecular Structures and Second-Order Nonlinear Optical Properties of Ionic Organic Crystal Materials. Crystals. 2016 Dec 14; 6 (12):158.