Ghaedi, Z., Hosseini, M., Sarreshtedari, F. (2017). Population change in the fine structure levels of cesium atoms using chirped laser. Journal of Optoelectronical Nanostructures, 2(2), 41-50.

Zahra Ghaedi; Mehdi Hosseini; Farrokh Sarreshtedari. "Population change in the fine structure levels of cesium atoms using chirped laser". Journal of Optoelectronical Nanostructures, 2, 2, 2017, 41-50.

Ghaedi, Z., Hosseini, M., Sarreshtedari, F. (2017). 'Population change in the fine structure levels of cesium atoms using chirped laser', Journal of Optoelectronical Nanostructures, 2(2), pp. 41-50.

Ghaedi, Z., Hosseini, M., Sarreshtedari, F. Population change in the fine structure levels of cesium atoms using chirped laser. Journal of Optoelectronical Nanostructures, 2017; 2(2): 41-50.

Population change in the fine structure levels of cesium atoms using chirped laser

^{1}Department of Physics, Shiraz University of Technology, Shiraz, Iran

^{2}Department of Physics, Shiraz University of Technology, Shiraz, Iran.

^{3}Magnetic Resonance Research Laboratory, Department of Physics, University of Tehran, Tehran, Iran.

Abstract

Here, the population transfer between two specific levels of Cesium atom under the influence of chirped laser source has been numerically investigated. The main goal of this study is the engineering of the population transfer between the 62S1/2 and 62P1/2 levels of Cesium which is corresponding to its D1 transition line using a chirped laser source. Constructing the system Hamiltonian, as well as the initial and boundary conditions, the time-dependent Schrödinger equations are numerically solved and the population versus time for different physical parameters has been investigated. The final population of each state is calculated and discussed for changing the parameters such as laser intensity, laser frequency and chirping parameter. The results show that using the chirped laser source with tuned parameters, we can arbitrarily control the population of levels.

[1] V. Prasad, B. Dahiya, K. Yamashita. Ionization of the H atom in ultrashort chirped laser pulses, Phys. Scripta. 82(5)(2010) 055302. [2] V. S. Malinovsky, J. L. Krause. Efficiency and robustness of coherent population transfer with intense, chirped laser pulses. Phys Rev A. 63 (2001) 043415. [3] X. Z. Zhang, Z. Z. Ren, G. R. Jia, X. T. Guo, W. G. Gong. Numerical exploration of population transfer of Rydberg-atom by single frequency chirped laser pulse. Chinese Phys, (12)(2008) B 17- 4476. [4] Ch. Sarkar, B. Rangana, S. S. Bhattacharyya, S. Samir. Control of population transfer in a multilevel Li2 molecule by stimulated hyper-Raman nonadiabatic passage with chirped laser pulses. Phys Rev A. 78(2)(2008) 023406. [5] S. Ibáñez, A. Peralta Conde, D. Guéry-Odelin, J. G. Muga. Interaction of strongly chirped pulses with two-level atoms. Phys Rev A. 84(1)(2011) 013428. [6] V. A. Astapenko, M. S. Romadanovskii. Excitation of a two-level system by a chirped laser pulse. Laser phys, (5)(2009) 969-973. [7] L. D. Landau. On the theory of transfer of energy at collisions II. Phys. Z. Sowjetunion 1, (1932) 2-46. [8] E. C. G. Stuckelberg. Theorie der unelastischen stosse zwischen atomen. Helv. Phys. Acta 5,(1932) 369-422. [9] E. Majorana. Orientated atoms in a variable magnetic field. Nuovo Cimento 9, (1932), 43-50. [10] H. Nakamura. Semiclassical treatment of nonadiabatic transitions: Multilevel curve crossing and nonadiabatic tunneling problems. J chem phys. (7)(1987) 4031-4041. [11] S. V. Prants. Nonadiabatic quantum chaos in atom optics. Commun Non Science Nume Sim. (7)(2012) 2713-2721. [12] H. J. Metcalf, P. van der Straten. Laser Cooling and Trapping. Springer-Verlag, New York Inc. (1999). [13] C. Wieman. Collected Papers of Carl Wieman. World Scientific Publishing Company Pvt. Ltd. Singapore. (2008). [14] C. Cohen-Tannoudji. Atoms in Electromagnetic Field. 2nd edn. World Scientific Series on Atomic, Molecular and Optical Physics. 3(2004). [15] C. Zener. Non-Adiabatic Crossing of Energy Levels. Proc. R. Soc. London A, 137 (09/1932) 696-702. [16] S. Ashhab. Landau-Zener transitions in a two-level system coupled to a finite temperature harmonic oscillator. Phys Rev A. 90(6)(2014) 062120. [17] F. Sarreshtedari, M. Hosseini. Tunable Landau-Zener transitions using continuous and chirped-pulse-laser couplings. Phys Rev A 95. (3)(2017) 033834. [18] W. Limei, H. Zhang, L. Zhang, G. Raithel, J. Zhao, S. Jia. Atom-interferometric measurement of Starklevel splittings. Physica Rev A. 92(3)(2015) 033619. [19] D. Van, C. S. E. Atreju Tauschinsky, HB van Linden Van Den Heuvell. Observation of Stückelberg oscillations in dipole-dipole interactions. Phys RevA. 80(6)(2009)063407. [20] M. A. Nielsen, I. L. Chuang, Quantum Computation and Quantum Information, Cambridge University Press, 2000. [21] D. Bouwmeester, A. Ekert, A. Zeilinger. The Physics of Quantum Information, Springer, Berlin Heidelberg New York, 2000. [22] M. Anwar, M. Faisal, A. Mushtaq. An experimental investigation of the trapdynamics of a cesium magneto-optical trap at high laser intensities. Eur Phys J D. (12) (2013) 1-10. [23] A. Bauch. Caesium atomic clocks: function, performance and applications. Meas Sci Technolog. 14(8)(2003) 1159. [24] B. Patton, E. Zhivun, D. C. Hovde, D. Budker. All-optical vector atomic magnetometer. Phys Rev Lett. 113(1)(2014) 013001. [25] D. A. Steck, Cesium D line data, Theoretical Division, http://steck.us/alkalidata, (2003). [26] P. Törmä, L. B. William. Strong coupling between surface plasmon polaritons and emitters. Reports on Progress in Physics. 78(1)(2015) 013901.