Casimir ‎effects‎‎ of nano objects in fluctuating scalar and electromagnetic fields: Thermodynamic investigating

Document Type : Articles


Department of Physics‎, ‎Faculty of Science‎, ‎Imam Khomeini International University‎, ‎34148‎ - ‎96818‎, ‎Ghazvin‎, ‎Iran


 Casimir entropy is an important aspect of casimir effect and at the nanoscale is visible. In this paper, we employ the path integral method to ‎obtain a‎ ‎general‎ relation for casimir entropy and ‎i‎nternal energy of arbitrary shaped objects in the presence of two, three and four dimension scalar fields and ‎the‎ electromagnetic field. For this purpose, using Lagrangian and based on a perturbative approach, a series expansion in susceptibility function of the medium was obtained for the Casimir force between arbitrary shaped objects foliated in a scalar or vector fluctuating field in arbitrary dimensions. The finite temperature corrections are derived and using it, we obtain the casimir entropy and internal energy of two nano ‎rib‎bons immersed in the scalar field and two nanospheres immersed in the scalar field and the electromagnetic field. The casimir entropy of two nanospheres immersed in the electromagnetic field ‎behave ‎differently‎ in small interval of temperature variations.  .


[1] S. Weinberg, The cosmological constant problem. Rev. Med. Phys. 61 (1989) 1.
[2] K. A. Milton, G. Romain, I. Gert-Ludwig, L. Astrid, R. Serge, Negative Casimir entropies in nanoparticle interactions. Journal of Physics: Condensed Matter. 27 (2015) 21.
[3] U. Stefan, H. Michael, I. Gert-Ludwig, A. Paulo, N. Maia,  Disentangling geometric and dissipative origins of negative Casimir entropies, arXiv:1507.05891v1
 [4] H. B. G. Casimir, On the attraction between two perfectly conducting plates. Proc. K. Ned. Akad. Wet. 51 (1948) 793.
[5] I. E. Dzyaloshinskii, E. M. Lifshitz, L. P. Pitaevskii, General theory of vander waals' forses, sov. Phys. Usp. 4 (1961) 153.
[6] K. A. Milton, E. K. Abalo, P. Parashar, N. Pourtolami, I. Brevik, S. A. Ellingsen, S. Y. Buhmann, S. Scheel,  Casimir-Polder repulsion: Three-body effects. Phys. Rev. A .91 (2015) 042510.
[7] P. L. Pitaevskii, Casimir-lifshtze forces and entropy, Int. J. Mod. Phys. A. 25 (2010) 2313.
[8] T. Emig, N. Graham, R. L. Jaffre, M. Kardar, Casimir Forces between Arbitrary Compact Objects. Phys. Rev. Lett. 99, (2007) 170403.
[9] S. J. Rahi, T. Emig, N. Graham, R. L. Jaffre, M. Kardar,  Scattering theory approach to electrodynamic Casimir forces . Phys. Rev. D 80 (2009) 085021.
[10] A. Lambrecht, P. A. Maia Neto, S. Reynaud, The Casimir effect within scattering theory .New Journal of physics 8 (2006)243.
[11] K. A. Milton, J. Wagner, Exact Casimir Interaction Between Semitransparent Spheres and Cylinders. Phys. Rev. D 77, (2008) 045005.
[12] K. Milton. P. Parashar and J. Wagner, Exact results for Casimir interactions between dielectric bodies: The weak-coupling or van der Waals limit, Phys. Rev. Lett. 101 (2008) 160402.
[13] G. Ingold, S. Umrath, M. Hartmann, R. Guerout, A. Lambrecht, S. Reynaud, and K. Milton, Geometric origin of negative Casimir entropies: A scattering channel analysis, Phys. Rev. E 91 (2015) 033203 .
[14] F. Kheirandish, M. Jafari, perturbative approach to calculating the casimir force in fluctuating scalar and vector fields. Phys. Rew A. 86 (2012) 022503.
[15] V. B. Bezerra, G. L. Klimchitskaya, V. M. Mostepanenko, Thermodynamical aspects of the Casimir force between real metals at nonzero temperature. Phys. Rev. A. 65 (2002) 052113.
[16] M. Bordag, I. G. Pirozhenko,  Casimir entropy for a ball in front of a plane . Phys. Rev. D. 82 (2010) 125016.
[17] P. Rodriguez-Lopez, Casimir energy and entropy in the sphere-sphere geometry. Phys. Rev. B. 84 (2011) 075431.
[18] B. Geyer, On thermal Casimir force between real metals. Journal of Physics: Conference Series, 1 (2009)
[19] G. L. Ingold, P. Hanggi, P. Talker, Specific heat anomalies of open quantum systems. Phys.Rev. E. 79 (2009) 061105.
[20] F.  Kheirandish, S. Salimi., Quantum field theory in the presence of a medium Green’s function expansions. Phys. Rev. A. 84 (2011) 062122.
[21] W. Greiner, J. Richardt, Field quantization. Springer-Verlag, Berlin, Heidelberg (1996).
[22] J. I. Kapusta, Finite-Temperature Field Theory. Cambridge University Press, Cambridge (1989).